
Stephen Checkoway

Programming Abstractions
Lecture 19: MiniScheme C

What can MiniScheme do at this point?

MiniScheme B has constant numbers

MiniScheme B has pre-bound symbols that are in the init-env

Recall

(parse input) — Parses the input, at this point only numbers, and returns a
(lit-exp num)

(eval-exp tree e) — Evaluates the parse tree in the environment e,
returning a value

MiniScheme B grammar
MiniScheme B

Grammar 
EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp

Data types constructed by parse

(struct lit-exp (num) #:transparent)  

(struct var-exp (symbol) #:transparent)

MiniScheme B parse

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [(symbol? input) (var-exp input)]  
 [else (error 'parse "Invalid syntax ~s" input)]))

MiniScheme B eval-exp

(define (eval-exp tree e)  
 (cond [(lit-exp? tree) (lit-exp-num tree)]  
 [(var-exp? tree)  
 (env-lookup e (var-exp-symbol tree))]  
 [else (error 'eval-exp "Invalid tree: ~s" tree)]))

You'll need a working env-lookup

What does (parse 275) return?

A. 275

B. (lit-exp 275)

C. It's an error

7

What does (parse 'z) return?

A. (lit-exp 'z)

B. (var-exp 'z)

C. It's an error

8

What does (eval-exp (var-exp 'z) environment) do?

A. Returns what z is bound to in environment

B. It's an error

C. It looks up with z is bound to, returning the result or causing an error if z
is not bound

D. Something else

9

Let's add arithmetic and some list procedures
MiniScheme C

Let's add +, -, *, /, car, cdr, cons, etc.

Students find this to be the hardest part of the project

‣ It's the first complex part

‣ It contains some things that make more sense later, once we add lambda
expressions

Enter lists

So far, the input to MiniScheme A and B has just been a number or a symbol

If the input is a list, then the kind of expression it represents depends on the first
element

‣ If the first element is 'lambda, it's a lambda expression

‣ If the first element is 'let, it's a let expression

‣ If the first element is 'if, it's an if-then-else expression

‣ etc.

Procedure applications don't have keywords, so any nonempty list for which

the first element is not one of our supported keywords is an application

(foo x 8 y) is an application with procedure foo and arguments x, 8, and y

Which rule should we add to our grammar to support procedure calls like  

(+ 10 15) and (car lst)?  

EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp  
 | ???

A. (PROC ARGS)

B. (PROC ARG*)

C. (symbol EXP*)

D. (EXP*)

E. (EXP EXP*)

12

Many ways to call procedures

(+ 2 3)

((lambda (x y) (+ x y)) 2 3)

(let ([f +]) (f 2 3))

The parser can't identify primitive procedures like + because symbols like f may
be bound to primitive procedures

‣ It can't tell because the parser does not have access to the environment

All that the parser can do is recognize a procedure application and parse

‣ the procedure; and

‣ the arguments

Procedure applications
MiniScheme C

EXP → number	 	 parse into lit-exp  

 | symbol	 	 parse into var-exp  

 | (EXP EXP*) parse into app-exp

An app-exp is a new data type that stores

‣ The parse tree for a procedure

‣ A list of parse trees for the arguments

(struct app-exp (proc args) #:transparent)

Recursive implementation
Parsing

Expressions are recursive: EXP → (EXP EXP*)

When parsing an application expression, you want to parse the sub expressions
using parse

(define (parse input)  
 (cond [(number? input) (lit-exp input)]  
 [(symbol? input) (var-exp input)]  
 [(list? input)  
 (cond [(empty? input) (error ...)]  
 [else (app-exp (parse (first input))  
 (...))])]  
 [else (error 'parse "Invalid syntax ~s" input)]))

Parse the

procedure

Parse the

arguments

How should you parse the arguments?

Consider input that looks like  

((lambda (x y) x) 2 3) or 

(f 4 5 6)

The procedure part can be parsed with (parse (first input))

How should you parse the arguments?

What is the result of (parse '(foo x y z))?

A. (app-exp 'foo '(x y z))

B. (app-exp (var-exp 'foo) '(x y z))

C. (app-exp (var-exp 'foo)  
 (list (var-exp 'x) (var-exp 'y) (var-exp 'z)))

D. (app-exp 'foo  
 (list (var-exp 'x) (var-exp 'y) (var-exp 'z)))

E. It's an error because the variables foo, x, y, and z aren't defined

17

What is the result of (parse '(foo (add1 x))?

A. (app-exp (var-exp 'foo)  
 (app-exp (var-exp 'add1) (var-exp 'x)))

B. (app-exp (var-exp 'foo)  
 (list (app-exp (var-exp 'add1) (var-exp 'x))))

C. (app-exp (var-exp 'foo)  
 (list (app-exp (var-exp 'add1)  
 (list (var-exp 'x)))))

D. It's an error

18

Evaluating an app-exp

Evaluate the procedure part

Evaluate each of the arguments

If the procedure part evaluates to a primitive procedure, call a procedure you'll
write that will perform the operation on the arguments

‣ E.g., if the primitive procedure is *, then you'll want to call * on the arguments

‣ In MiniScheme C, primitive procedures are the only supported type of
procedures; this will change later

The tricky part is what should the result of evaluating the procedure part be?

Evaluating the procedure part of an app-exp

Consider the input '(+ 2 3 4)

The procedure part is '+ which will be parsed as (var-exp '+)

Variable reference expressions are evaluated by looking the symbol up in the
current environment

Therefore, we need our initial environment to contain a binding for the symbol
'+ (and all the other primitive procedures we want to support)

prim-proc data type

We can create a new data type prim-proc

‣ (struct prim-proc (symbol) #:transparent)

We're going create a bunch of these

‣ (prim-proc '+)

‣ (prim-proc '-)

‣ (prim-proc 'car)

‣ (prim-proc 'cdr)

‣ (prim-proc 'null?)

‣ ...

prim-proc

A prim-proc is a value that will be returned by eval-exp, just like numbers
are in MiniScheme now

A (prim-proc 'car) is to the MiniScheme interpreter exactly the same thing
#<procedure:car> is to DrRacket

Since prim-proc is only used to interpret expressions, where should this data
type be defined?

Binding variables to prim-proc

In DrRacket, + is bound to #<procedure:+>

In MiniScheme, + needs to be bound to (prim-proc '+) in our initial

environment, init-env

And similarly for -, *, /, car, cdr, null? etc.

Adding primitives to our initial environment

(define primitive-operators  
 '(+ - * /))

(define prim-env  
 (env primitive-operators  
 (map prim-proc primitive-operators)  
 empty-env))

(define init-env  
 (env '(x y) '(23 42) prim-env))

